
PHYSICAL REVIEW E APRIL 1999VOLUME 59, NUMBER 4
Level fluctuations in quantum systems with multifractal eigenstates
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The relationship between universality of level fluctuation laws and multifractality of eigenstates is studied by
analyzing energy spectra of tight-binding models of quantum billiards with multifractal eigenstates. We show
that level fluctuations in our models are well described by the universal statistical laws such as Poisson
statistics for integrable systems and statistics for the Gaussian orthogonal random matrix ensemble as long as
the energy levels are located in bandlike spectra, which indicates that level statistics is irrelative to the
multifractal properties of eigenstates. Our results are further confirmed by statistical properties of energy
spectra in tight-binding models of two-dimensional quasicrystals.@S1063-651X~99!07204-9#

PACS number~s!: 05.45.2a, 71.23.Ft, 71.30.1h, 72.15.Rn
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The random matrix theory~RMT!, initially proposed by
Wigner and Dyson@1# for studying the spectrum of comple
nuclei, is now widely applied to many physical problem
such as disordered metals, mesoscopic systems and ch
quantum billiards@2–6#. It has been shown that level fluc
tuations of these complex systems are described by unive
laws such as statistics for the Gaussian orthogonal ran
matrix ensemble~GOE! @2#. On the other hand, it has bee
conjectured that level fluctuations for integrable quantum
liards follow the Poisson statistics in most cases@7,8#.

Eigenstates of the above quantum billiards and of G
are extended, i.e., the averaged spatial extension of
eigenstate scales with the size of the system. Multifra
eigenstates occur in various systems, e.g., at the m
insulator transition~MIT ! in the three-dimensional~3D!
Anderson model of disorder@9# and in tight-binding~TB!
models of quasicrystals@10,11#. The multifractality of an
eigenstatecE(r ) is revealed by the scaling behavior of th
inverse participation ratio @12# P(E,V)5( rucE(r )u4

;V2a(E), whereV is the size of the system. A multifracta
eigenstate is characteristic of 0,a(E),1, which scales dif-
ferently from the extended state witha(E)51. A natural
question is: what is the underlying level statistics in quant
systems with multifractal eigenstates? Extensive stud
@13–16# for the level fluctuations at the MIT of the Anderso
model indicate that there exists a new kind of level statis
different from the known level fluctuation laws, althoug
controversial results have been obtained concerning the
cific form of the new statistics. It has been found that le
fluctuations for Coulomb billiards@17#, rough circular bil-
liards @18#, and pseudointegrable rational billiards@19# also
show different statistics from the GOE result and the Po
sion statistics. Much attention has been paid to understan
the mechnism of the new statistics@15–17,20#. It is conjec-
tured that@15–17,20# level distributions are strongly influ
enced by the spatial overlapping of the corresponding eig
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states, and thus the new statistics can be described in t
of the multifractality of eigenstates. However, a recent c
culation @21# showed that the statistical properties of ener
spectra of a TB model of 2D quasicrystals are well describ
by the GOE. These two different results indicate that
relationship between level fluctuations and multifratcality
eigenstates is not yet clear.

In this paper, we investigate level fluctuations of spec
in TB models of quantum billiards with multifractal eigen
states. We note that multifarctal eigenstates may be ass
ated with a bandlike or a multi-fractal energy spectru
@10,11,24,25#. Consider an energy intervald at energyE. In
general, the number of levelsDN inside the interval has
scaling behaviorDN;db(E), asd→0. Bandlike spectra have
b(E)[1. 0,b(E),1 corresponds to a multifractal spe
trum. It is evident that the spectrum of a system of finite s
is composed of discrete energy levels. The bandlike and
multifractal behaviors of the spectra are defined when
system size goes to infinity. We will show that there is
class of quantum systems whose level fluctuations are irr
tive to the multifractality of the eigenstates as long as
energy levels are located in bandlike spectra.

Our study is based on the 2D Fibonacci lattice@24,25#
defined on a square lattice of unit cell with TB Hamiltonia
H5( ie i u i &^ i u1( i j t i , j u i &^ j u, wheree i is the site potential at
i th site andt i , j[1 are the nearest-neighbor hopping int
grals. Potentialse i are assumed to be separablee i5e ix
1e iy , wheree ik(k5x,y) independently forms the Fibonacc
sequence with two kinds of valuesu.0 and2u. The Fi-
bonacci sequenceSl( l→`) is given by the recusion relation
Sl 115Sl1Sl 21 ( l>1) with initial condition S05B and S1
5A, hereA and B correspond to potentials2u and u, re-
spectively. Successively, one hasS05B, S15A, S25AB,
S35ABA, S45ABAAB, . . . , and S`

5ABAABABAABAAB. . . . This model has been widel
used to study electronic properties of quasiperiodic syste
@11,24,25#. Let us consider 2D Fibonacci lattices with squa
boundary shape 0<x<L, 0<y<L and with Sinai’s billiard
boundary shape which is given by definition 0<y<x<L
andx21y2>L2/4 @2,4#. We mention that whenu[0, poten-
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tials inside the lattices are homogeneous and eigenstate
extended. Therefore one has the TB version of the integr
square billiard and the chaotic Sinai’s billiard. In this ca
level fluctuations are described by the Poisson statistics
the GOE statistics, respectively.

For the above generalized square billiard with Fibona
potentials, one can show that@24,25# the energy levelE and
its corresponding eigenstatecE(x,y) are given byE5Ex
1Ey andcE(x,y)5fEx

(x)3fEy
(y), whereEk andfEk

(k)

(k5x,y) are the eigenenergy and the eigenstate of 1D
bonacci chain, respectively. It follows from this relation th
@24,25# the spectrum is bandlike foru,0.6, multifractal for
u.2, or a mixture for 0.6,u,2 with some parts bandlike
and some parts multifractal. We can show that eigenst
are multifractal P(E,N);N2a(E) with 2a(E)5a1D(Ex)
1a1D(Ey), whereN is the number of sites of the billiard an
a1D(Ek) is the scaling exponent in 1D Fibonacci chain w
0,a1D(Ek),1 for any u.0 due to the multifractality of
the eigenstates@10,11#. Our numerical calculation shows tha
the spectra and the eigenstates of the generalized Sinai’s
liard with Fibonacci potential have the same properties
that of the generalized square billiard.

In general, the density of states~DOS! varies with energy
E. In order to observe the universal level fluctuation, o
needs to unfold the spectrum to have a linear integrated D
~IDOS! @2#. To fulfill this one can replace levelsEi by ei
5Nav(Ei), whereNav is the smoothed IDOS which can b
obtained by fitting the IDOS to a cubic spline or by loc
density average. We emphasize that IDOS of a multifra
spectrum exhibits nonuniform local nonlinear behavio
DN(E)}db(E) (d→0) with b(E),1. Thus the traditional
unfolding procedure on the basis of a local linear behavio
the IDOS is not applicable for multifractal spectra. Therefo
we focus our attention on the energy levels located in ba
like spectra in order to compare our results with the tra
tional universal level fluctuation laws.

The most frequently used quantities describing level fl
tuations are the level spacing distribution~LSD! P(s), num-
ber varianceS2, and spectral rigidityD3 . P(s) is the prob-
ability density of level spacingss5ei 112ei . One may also
consider the integrated LSD~ILSD! I (s)5*s

`P(s8)ds8
which is numerically more stable.S2 measures the fluctua
tion of the number of levelsDN in a strip of width W,
S2(W)5^DN2&2^DN&2, where^ & denotes the spectral av
erage.D3 is defined as the least squares deviation ofN(e)
from a linear behavior, averaged over a rangeK,

D3~K !5K min
A,B

~1/K !E de8@N~e8!2Ae82B#2L ,

with integral intervale2K/2<e8<e1K/2. For Poisson sta
tistics, we haveP(s)5exp(2s), S2(W)5W, and D3(K)
5K/15. For GOE, there is no expression forP(s) in a closed
form while RMT gives S2(W);(2/p2)ln(W) and D3(K)
;(1/p2)ln(K) for W@1 andK@1.

In general, scaling exponenta(E) varies with energy
@9–11,22,23#. Numerically, one@23# analyzes the scaling be
havior ofP(E,N) at energyE by averaging theP(E,N) data
are
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over a small energy intervaluE82Eu<DE. Apparently, a
reliable result should be independent of the value ofDE.
According to this, we numerically found that the scaling b
haviorP(E,N);N2a(E) with a(E),1 holds for the models
we studied. As examples,P(E,N) at the lower band edgeEL
and at energiesE50 andE520.91 close to the band cente
is illustrated in Fig. 1, whereDE50.001 for the generalized
square billiard andDE50.05 for the generalized Sinai’s bil
liard. The later interval is larger due to the smaller syst
sizes but it is still much smaller than the bandwidth 8.32 a
9.21 for u50.5 andu51, respectively. For the generalize
square billiard,a(EL)'0.85, a(0)'0.78 for u50.5, and
a(20.91)'0.65 for u51. For the generalized Sinai’s bil
liard, one findsa(EL)'0.90, a(0)'0.86 for u50.5, and
a(20.91)'0.77 for u51. We mention that we have als
calculatedP(E,N) with different small intervalsDE and
found the same conclusion.

Figure 2 shows statistics for energy levels around the
ergies where eigenstates exhibit multifractal behavior
shown in Fig. 1. Apparently, although eigenstates are mu

FIG. 1. Scaling behaviorP(E,N)}N2a(E) for ~a! generalized
square billiards and~b! generalized Sinai billiards with Fibonacc
potentialsu. Circles (s), boxes (h), and triangles (n) are results
at energiesE5EL for u50.5, E50 for u50.5, andE520.91 for
u51, respectively. Lines indicate the results of the least-square

FIG. 2. Statistical properties of energy levels in various parts
energy spectra of~a! the generalized square billiard of sizeN
59873987 and ~b! the generalized Sinai billiard of sizeR
5130,N56870. Solid line and dotted line indicate the GOE stat
tics and the Poisson statistics, respectively. Circles (s), boxes (h)
and diamonds (L) in ~a! are results for EL<E<EL

10.01 (60 245 levels,u50.5), 20.01<E<0.01 (2433 levels,u
50.5), and20.97<E<20.85 (9927 levels,u51), respectively.
Circles (s), boxes (h) and diamonds (L) in ~b! are results for
EL<E<EL10.4 (235 levels,u50.5), 20.1<E<0.1 (289 levels,
u50.5), and20.97<E<20.85 (195 levels,u51), respectively.
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fractal, the level fluctuations are well described by the Po
son statistics and the GOE statistics for the generali
square billiard and the generalized Sinai’s billiards, resp
tively. In order to further support our conclusion, we co
sider level statistics for the whole spectrum. In Fig. 3,
present results foru50.1, 0.2, 0.3, 0.4, and 0.5. Again, on
finds a very good agreement with the Poisson statistics
the GOE statistics. Level fluctuations for systems of differ
sizes are shown in inset of Fig. 3~a!. It is easy to see that th
deviations from the Poisson distribution and the GOE dis
bution turn to be smaller for systems with larger sizes, wh
indicates that the observed statistics is size independ
Some parts of the spectrum for 0.6,u,2 are multifractal
but some remain bandlike. We find that fluctuations of e
ergy levels in the bandlike region are still well described
the traditional universal statistical laws. Such behavior c
be seen in Fig. 2 for energy levels in a range@20.97,
20.85# for u51, where we find the bandlike behavior.
conclusion, our results for the generalized billiards with m
tifractal eigenstates clearly show that the level statistics
irrelevant to the multifractality of the eigenstates.

The above conclusion also holds for other models. Le
consider a TB Hamiltonian @26,27# H5( i@(1
2t)zi u i &^ i u1( j

zi tu i &^ j u# defined on the quasiperiodic octag
nal tiling, where 0,t<1 denotes the hopping integral, an
zi is the coordination number ofi th site which takes six

FIG. 3. Statistical properties for energy spectra of the gene
ized square billiards~dotted lines! of sizeN59873987 and of the
generalized Sinai billiards~solid lines! of size R5130,N56870
with Fibonacci potentialsu50.1, 0.2, 0.3, 0.4, and 0.5. Diamond
(L) and circles (s) indicate the Poisson statistics and GOE s
tistics, respectively. The upper curves in the inset of~a! illustrate
ln@I(s)# for the generalized square billiards of sizesN59873987
~dotted line!, 3773377 ~dashed line!, and 55355 ~long dashed
line!. The lower curves in the inset of~a! illustrate deviations
uI (s)2I GOE(s)u for the generalized Sinai billiards of sizesR
5130,N56870 ~solid line!, R555,N51247 ~dotted line!, and R
534,N5486 ~dashed line!.
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kinds of values 3, 4, 5, 6, 7, and 8. It was found@27# that
the spectrum fort51 is bandlike and the spectra fo
tc,t,1 (tc'0.35) exhibit bandlike behavior in some en
ergy regions. Eigenstates for 0,t<1 are multifractal in gen-
eral, associated with an anomalous diffusion@27#. It was well
illustrated@21# that the underlying level statistics fort51 is
described by GOE. However, explicit description of the lev
fluctuations in the general case 0,t,1 @27,28# is still lack-
ing. By analyzing energy spectra of the octagonal patc
introduced in Ref.@21#, we find that the statistical propertie
of energy levels in the bandlike region fortc,t,1 are well
described by GOE as it does fort51. As an example, Fig. 4
presents level statistics for energy levels in a range20.5
<E<0.5 for t50.7 on a patch without exact symmetr
given by @21# 0<x<L, 2(L/4)<y<(3L/4) ~the eightfold
symmetrical site is located at the origin of thexy plane!. We
note that our calculation shows thatP(E,N) for energies
aroundE50 exhibits a scaling behavior witha(E)'0.84.
From Fig. 4, we can see that ILSDI (s) and spectral rigidity
D3 agree quite well with the GOE results.

Finally, we mention that we have studied level statist
for energy levels in multifractal spectra without unfolding.
has been shown@29# that the level statistics of a multifracta
spectrum is characteristic of an inverse power law of
LSD P(s);s2g with g.0. Such a behavior was found@29#
in the Harper model and also in the multifractal spectra
the octagonal TB models@27,28#. Our calculations for both
the generalized billiards with Fibonacci potentials and
octagonal TB models further confirm the inverse power la

In summary, we study level fluctuations of TB models
quantum billiards with 2D Fibonacci potentials. The scali
behavior of the inverse participation ratio indicates that
corresponding eigenstates are multifractal. We note that
widely used unfolding procedure to find universal level flu
tuations is not applicable for multifractal spectra. Taking th
into account, we show that level fluctuations for energy sp
tra of the generalized square billiard and the generalized
nai’s billiard with Fibonacci potentials are well described
the Poisson statistics and the GOE statistics, respectively
long as the energy levels are located in bandlike spectr
the limit of the infinite system size. We also show that su

l-

-

FIG. 4. Statistical properties of energy levels in a range20.5
<u<0.5 for the octagonal tight-binding model witht50.7 ~circles
s). The system size isL580,N57785. The solid lines are the
results of GOE.
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a conclusion holds for TB models of 2D octagonal qua
crystal. Our results show that, in contrast to the case of
critical level statistics observed at the MIT of the Anders
model @13–16#, there is another class of quantum syste
with multifractal eigenstates whose level statistics is irre
tive to the multifractality of the eigenstates.
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