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Level fluctuations in quantum systems with multifractal eigenstates
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The relationship between universality of level fluctuation laws and multifractality of eigenstates is studied by
analyzing energy spectra of tight-binding models of quantum billiards with multifractal eigenstates. We show
that level fluctuations in our models are well described by the universal statistical laws such as Poisson
statistics for integrable systems and statistics for the Gaussian orthogonal random matrix ensemble as long as
the energy levels are located in bandlike spectra, which indicates that level statistics is irrelative to the
multifractal properties of eigenstates. Our results are further confirmed by statistical properties of energy
spectra in tight-binding models of two-dimensional quasicrysf&l$063-651X99)07204-9

PACS numbeps): 05.45-a, 71.23.Ft, 71.36:h, 72.15.Rn

The random matrix theoryRMT), initially proposed by states, and thus the new statistics can be described in terms
Wigner and Dysoii1] for studying the spectrum of complex of the multifractality of eigenstates. However, a recent cal-
nuclei, is now widely applied to many physical problemsculation[21] showed that the statistical properties of energy
such as disordered metals, mesoscopic systems and chaadigectra of a TB model of 2D quasicrystals are well described
quantum billiards[2—6]. It has been shown that level fluc- by the GOE. These two different results indicate that the
tuations of these complex systems are described by universgdlationship between level fluctuations and multifratcality of
laws such as statistics for the Gaussian orthogonal randoggenstates is not yet clear.
matrix ensemblg¢GOB) [2]. On the other hand, it has been | this paper, we investigate level fluctuations of spectra
qonjectured that Iev_el quctuat_ior)s fqr integrable quantum bily, TB models of quantum billiards with multifractal eigen-
liards follow the Poisson statistics in most capes]. states. We note that multifarctal eigenstates may be associ-

Eigenstates of the above quantum billiards and of GOEytay yith a bandlike or a multi-fractal energy spectrum

are extended, ie., .the aver.aged spatial extensmn_ of t 0,11,24,2% Consider an energy intervalat energyE. In
eigenstate scales with the size of the system. Multifracta S .
eneral, the number of level&AN inside the interval has

eigenstates occur in various systems, e.g., at the metate . : B(E) .
insulator transition(MIT) in the three-dimensiona(3D) scaling behaviod N~ 5, as4—0. Bandlike spectra have

Anderson model of disorddi9] and in tight-binding(TB) ~ B(E)=1. 0<B(E)<1 corresponds to a multifractal spec-
models of quasicrystal§l0,11. The multifractality of an f[rum. Itis ewdent_that the spectrum of a system of_ finite size
eigenstateye(r) is revealed by the scaling behavior of the 1S cqmposed of dl_screte energy levels. The bgndhke and the
inverse participation ratio [12] P(E,V)=3,|¢e(r)|* multifractal behaviors of the spectra are defined when the
~V~*E) whereV is the size of the system. A multifractal System size goes to infinity. We will show that there is a
eigenstate is characteristic okQv(E) <1, which scales dif- class of quantum systems whose level fluctuations are irrela-
ferently from the extended state with(E)=1. A natural tive to the multifractality of the eigenstates as long as the
question is: what is the underlying level statistics in quantunenergy levels are located in bandlike spectra.
systems with multifractal eigenstates? Extensive studies Our study is based on the 2D Fibonacci latt{@a,25
[13-16 for the level fluctuations at the MIT of the Anderson defined on a square lattice of unit cell with TB Hamiltonian
model indicate that there exists a new kind of level statisticd? == €|i )(i|+Zjjt; ;|i){j|, whereg; is the site potential at
different from the known level fluctuation laws, although ith site andt; ;=1 are the nearest-neighbor hopping inte-
controversial results have been obtained concerning the spgrals. Potentialse; are assumed to be separalde= e,
cific form of the new statistics. It has been found that level+ €y, , wheree; (k=x,y) independently forms the Fibonacci
fluctuations for Coulomb billiard$17], rough circular bil- sequence with two kinds of values>0 and —u. The Fi-
liards [18], and pseudointegrable rational billiarfi9] also ~ bonacci sequencg (I —<) is given by the recusion relation
show different statistics from the GOE result and the PoisS,1=5+S_; (I=1) with initial condition Sy=B and S;
sion statistics. Much attention has been paid to understandirrg A, hereA and B correspond to potentials u andu, re-
the mechnism of the new statistits5—17,2Q. It is conjec-  spectively. Successively, one h8=B, S;=A, S,=AB,
tured that[15-17,2Q level distributions are strongly influ- S;=ABA, S,=ABAAB ..., and S,
enced by the spatial overlapping of the corresponding eigen=ABAABABAABAAB.. . This model has been widely
used to study electronic properties of quasiperiodic systems
[11,24,29. Let us consider 2D Fibonacci lattices with square
*Present address: Department of Physics, University of Tenneddoundary shape€9x=<L, O<y=<L and with Sinai’s billiard
see, Knoxville, TN 37996 and Solid State Division, Oak Ridge boundary shape which is given by definitiors§<x<L
National Laboratory, Oak Ridge, TN 37831-6032. andx?+y?=12/4[2,4]. We mention that when=0, poten-
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tials inside the lattices are homogeneous and eigenstates are -3
extended. Therefore one has the TB version of the integrable
square billiard and the chaotic Sinai’s billiard. In this case,
level fluctuations are described by the Poisson statistics and g
the GOE statistics, respectively. £
For the above generalized square billiard with Fibonacci
potentials, one can show th&4,25 the energy leveE and
its corresponding eigenstaig:(x,y) are given byE=E,
+E, and ye(x,y) = e (X) X e, (¥), whereEy and e, (K)
(k=x,y) are the eigenenergy and the eigenstate of 1D Fi-
bonacci chain, respectively. It follows from this relation that  FIG. 1. Scaling behavioP(E,N)=N~*E) for (a) generalized
[24,25 the spectrum is bandlike far<0.6, multifractal for  square billiards andb) generalized Sinai billiards with Fibonacci
u>2, or a mixture for 0.6.u<2 with some parts bandlike potentialsu. Circles (©), boxes (d), and triangles £) are results
and some parts multifractal. We can show that eigenstates energie€=E_ for u=0.5, E=0 for u=0.5, andE=—0.91 for
are multifractal P(E,N)~N"*®) with 2a(E)= a;p(Ey) u=1, respectively. Lines indicate the results of the least-squares fit.
+ a1p(Ey), whereN is the number of sites of the billiard and
a1p(Ey) is the scaling exponent in 1D Fibonacci chain with
0<ayp(E)<1 for anyu>0 due to the multifractality of over a small energy intervdE’—E|<AE. Apparently, a
the eigenstated0,11. Our numerical calculation shows that reliable result should be independent of the valueA&.
the spectra and the eigenstates of the generalized Sinai’s b#ccording to this, we numerically found that the scaling be-
liard with Fibonacci potential have the same properties aavior P(E,N)~N~*E) with a(E)<1 holds for the models
that of the generalized square billiard. we studied. As example®)(E,N) at the lower band edde,_
In general, the density of statd30S) varies with energy and at energieE=0 andE=—0.91 close to the band center
E. In order to observe the universal level fluctuation, oneis illustrated in Fig. 1, wherd E=0.001 for the generalized
needs to unfold the spectrum to have a linear integrated DOSquare billiard and E= 0.05 for the generalized Sinai’s bil-
(IDOS) [2]. To fulfill this one can replace levelg; by g liard. The later interval is larger due to the smaller system
=N.(E;), whereN,, is the smoothed IDOS which can be sizes but it is still much smaller than the bandwidth 8.32 and
obtained by fitting the IDOS to a cubic spline or by local 9.21 foru=0.5 andu=1, respectively. For the generalized
density average. We emphasize that IDOS of a multifractatquare billiard,«(E,)~0.85, «(0)~0.78 for u=0.5, and
spectrum exhibits nonuniform local nonlinear behaviorsa(—0.91)~0.65 foru=1. For the generalized Sinai’'s bil-
AN(E)x 8#®) (6—0) with B(E)<1. Thus the traditional liard, one findsa(E,)~0.90, a(0)~0.86 for u=0.5, and
unfolding procedure on the basis of a local linear behavior olx(—0.91)~0.77 foru=1. We mention that we have also
the IDOS is not applicable for multifractal spectra. Thereforecalculated’P(E,N) with different small intervalsAE and
we focus our attention on the energy levels located in bandfound the same conclusion.
like spectra in order to compare our results with the tradi- Figure 2 shows statistics for energy levels around the en-
tional universal level fluctuation laws. ergies where eigenstates exhibit multifractal behavior as
The most frequently used quantities describing level flucshown in Fig. 1. Apparently, although eigenstates are multi-
tuations are the level spacing distributiGrtSD) P(s), num-
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ber variance®,,, and spectral rigidityA;. P(s) is the prob- 1.0 & — ———— 0.6
ability density of level spacings=e¢;,;—e¢;. One may also & Y (b) (@ #
consider the integrated LSOILSD) I(s)=[¢P(s’)ds’ 08 —@b - ang (b) o4
which is numerically more stabl&, measures the fluctua- . g <
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FIG. 2. Statistical properties of energy levels in various parts of
energy spectra ofa) the generalized square billiard of si2é¢
=987x987 and (b) the generalized Sinai billiard of siz&

o . - , . _
with integral intervale —K/2< €’< e+ K/2. For Poisson sta-  _;54\_ 6570 Solid line and dotted line indicate the GOE statis-

tistics, we haveP(s)= e_xp(—s), EZ(W) =W, a_nd A5(K) tics and the Poisson statistics, respectively. Circle$, (boxes (0)
=K/15. For GOE, there is no expression ffs) inaclosed 4,4 diamonds ¢) in (@ are results for E,<E<E,
form while RMT gives 3,(W)~(2/7%)In(W) and A3(K) 10,01 (60 245 levelsy=0.5), — 0.01<E<0.01 (2433 levelsy
~(Um?)In(K) for W=>1 andK>1. =0.5), and—0.97<E=<—0.85 (9927 levelsu=1), respectively.
In general, scaling exponent(E) varies with energy Circles (O), boxes (J) and diamonds ¢ ) in (b) are results for
[9-11,22,23 Numerically, ond 23] analyzes the scaling be- E, <E<E, +0.4 (235 levelsu=0.5), —0.1<E=<0.1 (289 levels,
havior of P(E,N) at energ)E by averaging thé?(E,N) data  u=0.5), and—0.97<E<-0.85 (195 levelsu=1), respectively.
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FIG. 4. Statistical properties of energy levels in a range.5

2.0 LI - T2 1 T 0.8
r (b) " f (© =<u=0.5 for the octagonal tight-binding model with- 0.7 (circles
15 [ - 9)»@ 706 O). The system size i€ =80N=7785. The solid lines are the
o -
L 1.0 _ - 4044 results of GOE.
05 |- - o 02
00 & s L 0.0 :
4 0 5 10 15 20 kinds of values 3, 4, 5, 6, 7, and 8. It was fouf¥] that
K the spectrum fort=1 is bandlike and the spectra for

t.<t<1 (t.~0.35) exhibit bandlike behavior in some en-

ized square billiard¢édotted lineg of sizeN=987x987 and of the ergy reg'on_s' Elge,nStates fora<1 ar? multifractal in gen-
generalized Sinai billiardgsolid lines of size R=130N=6g70  €ral, associated with an anomalous diffusiail. It was well
with Fibonacci potentialsi=0.1, 0.2, 0.3, 0.4, and 0.5. Diamonds illustrated[21] that the underlying level statistics for=1 is
(¢) and circles O) indicate the Poisson statistics and GOE sta-described by GOE. However, explicit description of the level
tistics, respectively. The upper curves in the inse(@fillustrate  fluctuations in the general case<®<1 [27,2§ is still lack-
In[1(s)] for the generalized square billiards of siZds=987x987  ing. By analyzing energy spectra of the octagonal patches
(dotted ling, 377x377 (dashed ling and 55<55 (long dashed introduced in Ref[21], we find that the statistical properties
line). The lower curves in the _inset (.:(fa). iIIu_s_trate devigtions of energy levels in the bandlike region fy<t<1 are well
[1(8) ~1coe(s)| for the generalized Sinai billiards of size®  yagcrined by GOE as it does for 1. As an example, Fig. 4
zéi?\lN:zlgg?(ga(\ZEgi ::2;) R=55N=1247 (dotted ling, and R presents level statistics for energy levels in a rang@5

’ <E<O0.5 for t=0.7 on a patch without exact symmetry

given by[21] O=x=<L, —(L/4)<y=<(3L/4) (the eightfold

fractal, the level fluctuations are well described by the Pois_symmetncal site Is Iocqted at the origin of kg plane. We
ote that our calculation shows th@(E,N) for energies

son statistics and the GOE statistics for the generalizefil L . . .
square billiard and the generalized Sinai's billiards, respec&’CUNdE=0 exhibits a scaling behavior witk(E)~0.84.
tively. In order to further support our conclusion, we con- oM Fig. 4, we can see that ILSIPs) and spectral rigidity
sider level statistics for the whole spectrum. In Fig. 3, wels agree quite well with the GOE results. o
present results fou=0.1, 0.2, 0.3, 0.4, and 0.5. Again, one Finally, we mention that we have studied level statistics
finds a very good agreement with the Poisson statistics antr energy levels in multifractal spectra without unfolding. It
the GOE statistics. Level fluctuations for systems of differenthas been showj29] that the level statistics of a multifractal
sizes are shown in inset of Fig(&. It is easy to see that the spectrum is characteristic of an inverse power law of the
deviations from the Poisson distribution and the GOE distriLSD P(s)~s~ ¥ with y>0. Such a behavior was foufid9]
bution turn to be smaller for systems with larger sizes, whichin the Harper model and also in the multifractal spectra of
indicates that the observed statistics is size independernthe octagonal TB model7,28. Our calculations for both
Some parts of the spectrum for 8.6<2 are multifractal the generalized billiards with Fibonacci potentials and the
but some remain bandlike. We find that fluctuations of enoctagonal TB models further confirm the inverse power law.
ergy levels in the bandlike region are still well described by  |n summary, we study level fluctuations of TB models of
the traditional universal statistical laws. Such behavior cayuantum billiards with 2D Fibonacci potentials. The scaling
be seen in Fig. 2 for energy levels in a range0.97,  pehavior of the inverse participation ratio indicates that the
—0.85 for u=1, where we find the bandlike behavior. In corresponding eigenstates are multifractal. We note that the
conclusion, our results for the generalized billiards with mul-yigely used unfolding procedure to find universal level fluc-
tifractal eigenstates clearly show that the level statistics ig,ations is not applicable for multifractal spectra. Taking this
irrelevant to the multifractality of the eigenstates. into account, we show that level fluctuations for energy spec-
The above conclusion also holds for other models. Let Ugr, of the generalized square billiard and the generalized Si-
consider  a , TB  Hamiltonian [26,27 H=ZX[(1  najs billiard with Fibonacci potentials are well described by
—t)z;[i)(i|+=;'t|i)(j|] defined on the quasiperiodic octago- the Poisson statistics and the GOE statistics, respectively, as
nal tiling, where G<t<1 denotes the hopping integral, and long as the energy levels are located in bandlike spectra in
z; is the coordination number dfth site which takes six the limit of the infinite system size. We also show that such

FIG. 3. Statistical properties for energy spectra of the general
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a conclusion holds for TB models of 2D octagonal quasi- J.X.Z. thanks R. Ketzmerick, I. Guarnieri, U. Grimm, M.
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critical level statistics observed at the MIT of the Andersonful discussions. J.X.Z. is grateful for the kind hospitality in
model [13—16, there is another class of quantum systemsMax-Planck-Institut fu Stramungsforschung in Gtingen.
with multifractal eigenstates whose level statistics is irrela-Support from MPI, SEdC, and the NSF of Chi@aX.Z) is
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